Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero Gravity Phase Separator Technologies - Past, Present and Future

1992-07-01
921160
Spacecraft life support equipment is often challenged with two phase flow, where liquid and gas exist together. In the zero gravity environment of an orbiting spacecraft, the behavior of a liquid/gas interface is dominated by forces not usually observed in one “G” due to the overwhelming effects of gravity. The normal perceptions no longer apply. Water does not run down hill and bubbles do not rise to the surface. Surface energy, capillary forces, wetting characteristics and momentum effects predominate. Techniques and equipment have been developed to separate the liquid/gas mixture into its constituent parts with various levels of efficiency and power consumption.
Technical Paper

Zero Gravity and Life Support Systems — Friends or Foes?

1982-02-01
820837
Manned spacecraft life suport systems must operate in a zero gravity environment. Lack of the “pull” of gravity affects heat and mass transfer, fluid transport, phase change, and chemical and electrochemical processes. This paper covers new concepts necessary for humidity control, evaporative coolers, distillation units, and similar equipment required for spacecraft life support. Specific applications used on the Space Shuttle and in development for advanced regenerative systems are discussed, including how they work, how they are tested on earth, and how much, if at all, the weightless environment penalizes the designs.
Technical Paper

Zero-G Simulation using Neutral Buoyancy

1989-07-01
891529
For human beings who have been reared on the earth with its 1 G gravitational field, the condition of weightlessness is a world with which we are unfamiliar. Even if the layout and equipment configuration of a spacecraft designed to compensate for operation under Zero-G conditions, there are some things which are not effective under actual weightless conditions. In the design of a manned spacecraft, it is necessary to accumulate design data on human performance in a weightless condition, then to undertake design evaluations and verification under weightless conditions. In this paper, testing for the purpose of evaluating the effectiveness of Zero-G simulation using neutral buoyancy, conducted first of all in Japan, and recommendations on the equipment and Facilities required to conduct such simulations, are described.
Technical Paper

Zero-G Water Selection Separator: A Performance Tradeoff

1969-02-01
690642
This paper presents a trade-off study to select a water separator system for a 3-man, 140-day, zero-g mission. Included is a summary of feasible concepts, a compilation of data on existing hardware, and a comparison of the performance characteristics of each with respect to the overall system. Six approaches to zero-g water separation were considered and are discussed: hydrophobic/hydrophilic screens; integrated condenser-water separators; centrifugal separators; cellular sponges; vortex separators; and elbow separators. Some of these techniques have high-performance characteristics with regard to water removal efficiency. However, when reduced to hardware, these same techniques may not integrate well with the overall system. The system selected was the integrated condenser-water-separator. This system requires no power, has no moving parts, and has a very small envelope.
Technical Paper

Zero-Gravity Testing of a Waste Management System

1969-02-01
690644
This paper describes the testing of a waste management system designed and fabricated for use in a space vehicle. The system provides for the collection and inactivation of urine, feces, emergency diarrheal disorders, vomitus, and debris; the volumetric determination of each micturition; and onboard storage of the inactivated wastes within the waste management system compartment. The zero-gravity test program conducted in a KC-135 aircraft provided the primary verification of the performance of the waste collection and urine volume determination functions prior to actual space flight. The test hardware simulated the actual system to a high degree of fidelity with respect to operational characteristics of the airflow required in collection, mechanical functions and system pressure differentials, in order to minimize simulation errors.
Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Zero-Waste PVD Cadmium for High Strength Steels

1998-11-11
983137
In spite of environmental issues related to cadmium and its electroplating process, electroplated cadmium is still extensively used in the aerospace and defense sectors. This trend is likely to continue especially for high strength steels because cadmium provides the best known corrosion and embrittlement protection for this application. Consequently, the environmental concerns related to the cadmium electroplating have been addressed using an alternative Zero-waste Physical Vapor Deposition (Z-PVD). This method does not use liquids, it recycles cadmium in situ, and is free of hydrogen embrittlement. The Z-PVD process is now in commercial production for the aerospace fasteners. The quality of the coatings has been at least equal to that of the electroplated cadmium.
Standard

Zinc Phosphate Treatment Paint Base

2019-05-17
CURRENT
AMS2480J
This specification covers the requirements for producing a zinc phosphate coating on ferrous alloys and the properties of the coating.
Standard

Zinc Phosphate Treatment Paint Base

2023-09-21
WIP
AMS2480K
This specification covers the requirements for producing a zinc phosphate coating on ferrous alloys and the properties of the coating.
Technical Paper

Zirconia Electrolysis Cells for Oxygen Generation from Carbon Dioxide for Mars In-Situ Resource Utilization Applications

1998-07-13
981655
A zirconia electroysis cell is an all-solid state (mainly ceramic) device consisting of two electrodes separated by a dense zirconia electrolyte. The cell electrochemically reduces carbon dioxide to oxygen and carbon monoxide at elevated temperatures (800 to 1000°C). The zirconia electrolysis cell provides a simple, lightweight, low-volume system for Mars In-Situ Resource Utilization (ISRU) applications. This paper describes the fabrication process and discusses the electrochemical performance and other properties of zirconia electrolysis cells made by the tape calendering method. Electrolytes produced by this method are very thin (micrometer-thick); the thin electrolyte reduces ohmic losses in the cell, permitting efficient operation at temperatures of 800°C or below.
Technical Paper

Zn-Ni Plating as a Cadmium Alternative

2007-09-17
2007-01-3837
In a 2-year program sponsored by SJAC, an aqueous electroplating process using alkaline Zn-Ni with trivalent chromium post treatment is under evaluation for high strength steel for aircraft application as an alternative to cadmium. Commercial Zn-15%Ni rack/barrel plating solutions are basis for plating aircraft parts or fasteners. Brightener was reduced from the original formula to form porous plating that enables bake-out of hydrogen to avoid hydrogen embrittlement condition. Properties of the deposit, such as appearance, adhesion, un-scribed corrosion resistance, and galvanic corrosion resistance in contact with Al alloy, were evaluated. Coefficient of friction was compared with Cd plating by torque-tension measurements. Evaluation of the plating for scribed corrosion resistance, primer adhesion, etc. will continue in FY2007.
Technical Paper

Zone of Influence of Porous Suction Tubes in Condensing Heat Exchanger for Space Systems

2008-06-29
2008-01-2075
A “next generation” condensing heat exchanger for space systems has to satisfy demanding operational requirements under variable thermal and moisture loads and reduced gravity conditions. Mathematical models described here are used to investigate transient behavior of wetting and de-wetting dynamics in the binary porous system of porous tubes and porous cold plate. The model is based on the Richard's equation simplified for the zero-gravity conditions. The half-saturation distance or the zone of influence of the porous annular suction tubes on the cold-plate porous material will be in the range of 1 to 10 cm for the time scales ranging from 100 to 10,000 seconds and moisture diffusivity in the range of D = 10-4 to 10-6 m2/s.
Technical Paper

Zoonoses and Enclosed Environments

1991-07-01
911513
The likelihood of transmission of potential disease agents between animals and man during spaceflight is a real concern. Development of disease exclusion lists for animals and refinement of animal containment units have been the principal means of providing protection to the crew members. Awareness of potential latent infections and a judicious use of the higher risk category of animals such as wild-caught nonhuman primates provides another level of protection. Use of high efficiency filters, gasketing, and differential air pressures have all enabled increasing levels of safety through containment of potential aerosol escape from animal habitats.
Article

Zwick Roell provides flexible materials testing over a wide temperature range

2018-10-19
To enable the tests required for development work to be performed with maximum efficiency, the Zwick Roell Group (ZwickRoell) – a global supplier of materials testing machines based out of Ulm, Germany – developed a materials testing machine that can be equipped with both a temperature chamber and a high-temperature furnace.
Technical Paper

development of the SUPPRESSOR AND THRUST BRAKE FOR THE DC-8 AIRPLANE

1959-01-01
590061
THIS PAPER presents the development of the DC-8 suppressor and thrust brake unit from initial test work through the final design. The selection of the production unit was based on a wide background of test work using both model and full-scale facilities. On the basis of this work, the configuration selected for production consisted of a fixed, corrugated, suppressing nozzle with a retractable ejector. A target-type thrust brake, mounted in the ejector, was chosen for the thrust brake production unit. Approximately 12-db suppression and 44% reverse thrust are provided by the unit. The ejector is hydraulically operated and the thrust brake air actuated. Both actuation systems obtain power from the aircraft systems which provides for operation during engine-out conditions. Alternate methods of actuation are provided in case of a primary system failure.
Article

igus develops 3D-printable bearing material with low-friction properties

2014-06-09
igus has developed what it claims is the world’s first tribologically enhanced plastic filament for 3D printers, which are used to print full-size, three-dimensional objects. Specifically created for motion control applications, the low-friction material is 50 times more resistant to wear and abrasion than conventional 3D printer materials, according to the German plastics company.
X